Conventional decontamination of chemical warfare agents is based on:

- **Dissolution** organic solvents, petrol, paraffin, etc.
- **Removal** bentonite, magnesia, absorbing powders
- ** Destruction** basic solutions, detergents, chlorinated lime
- **Combustion** high temperatures or plasma

All these methods need huge amounts of reagents and/or energy and this poses several problems in terms of safety, environmental and economical sustainability, costs and disposal of the detoxified by-products.

Saponite Clays Materials

Among saponites, saponite shows promising features for catalytic applications:
- high specific surface area
- good thermal stability

Characterization of Nb-SAP

Layered morphology even more evident on nano-scale level

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nb (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-SAP</td>
<td>1.32</td>
</tr>
<tr>
<td>Na/Nb-SAP</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Catalytic evaluation

Sulfur mustard (mustard), among other CW, is not easy degradable.

Nb Saponite prepared from Nb(OEt)$_3$, precursor is able to transform $>98\%$ of CEES in less than 8 h, under very mild conditions, using $\text{aq. H}_2\text{O}_2$ and all-clear after 8 h at room T

- active at room T too
- no external heating
- presence of Nb(V) is essential

Toxicological Evaluation: biotests

Biotoxins based on different living organisms:

- **Daphnia magna** (Cladocera)
- **Photobacterium letharigene** Vibrio fischeri Sh1 isolated from Black Sea and Sea of Azov in Ukraine.

Development of novel and rapid approaches in biotoxicity testing based on luminescent bacteria:

They emit visible (blue-green, sometimes yellow) light as a result of cell metabolism.

Principles of bioluminescent testing

Biological effect of Nb-saponites on P. leiognathi Sh1

Saponite-based materials do not show inhibition of luminescence.

Removal AND Destruction on Heterogeneous Catalysts

Inorganic oxides are efficient in removal as they have a porous and robust structure.

If we add catalytically active sites on the porous support we get an active protection and a tool for the decontamination.

Not only adsorbent, but also active.

Towards Niobium

The robustness of Nb-SiO$_2$ to metal leaching is an advantage for use with aqueous H$_2$O$_2$.

Insertion of Nb(V) species

The introduction of Nb ions into the synthesis gel did not alter the structure of saponite clays.

Hami isolated NbO$_2$ centres with tetrahedral and pentahexacoordinated geometry.

no formation of detectable segregated NbO$_2$-like phases

Oxidative degradation of CEES

Oxidative degradation of CEES at 25% in $\text{aq. H}_2\text{O}_2$.

Concentration profiles of CEES (14 Mm), $\text{aq. H}_2\text{O}_2$ (70 mM), 20 ml. n-heptane, 20 mg catalyst, 258 K.

Destruction

- CEES over Nb-SAP (I)
- Nb-SAP (II)
- H$_2$O$_2$ (V)
- Nb/SAP (III)

Gaseous products

- CEESO
- CEESO$_2$

Degradation

- CEES, H$_2$O$_2$ (78%)
- CeSSOl (10%)
- CeSS (2%)
- CeSSO$_2$ (78%)
- CeSSO$_3$ (10%)
- CeSSO$_4$ (2%)

Catalytic performance

- Nb-SAP (I)
- Nb-SAP (II)
- Nb-SAP (III)
- H$_2$O$_2$ (IV)

Comparative reactivity

Compared to catalysts (I) and (II) as well as to the control, the use of Nb-SAP (III) and Nb/SAP (III) in the presence of H$_2$O$_2$ provides a complete suppression of the gaseous products.

Turnaround activity by controlling the reaction time

Science for Peace and Security Programme

Multiple Projects

“NanoContraChem” project no. 984481

Nanostructured Materials for the Catalytic Decontamination of Chemical Warfare Agents

www.nancontrachem.org